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Character varieties

G complex reductive affine algebraic group
(G = GL(n,C),PGL(n,C),SL(n,C),Sp(n,C)...).
Γ finitely presented group, Γ = 〈γ1,γ2, . . . ,γr |r1, r2, . . . rs〉
RΓG := Hom(Γ,G ) G -representation variety of Γ

G -Character variety of Γ

XΓG := RΓG//G , GIT quotient, under conjugation: ρ ∈ Hom(Γ,G ),
(g ·ρ)(γ) := gρ(γ)g−1, g ∈ G , γ ∈ Γ.

Example

with Γ = Fr free group of rank r we have XrG := XFr
∼= G r//G

with Γ = Zr free abelian group we have
RZrG = {(g1, · · · ,gr ) : gigj = gjgi} ⊂ G rCommuting variety of
r -tuples in G and XZr = RZr (G )//G



Character Varieties Relation with Number Theory Generation series for the E-polynomials of GLn-character varieties Serre polynomials of SLn- and PGLn- character varieties of the free groups

Motivation

(Topology/Differential Geometry) Space of flat G-connections on a
manifold M with π1(M) = Γ:

There is a natural one-to-one correspondence:
hom(Γ,G )//G = XΓG � {flat connections on P}/Gauge

(Algebra) Matrix invariants under simultaneous conjugation.
(Knot theory) A-polynomial defined by the image of a morphism
between character varieties: XΓSL2(C)→XZ2SL2(C).
Non-abelian Hodge correspondence:

Theorem (Hitchin, Donaldson, Corlette, Simpson 1986-90)

Let Γ = π1(M), M a Riemann surface and G be a real or complex reductive
Lie group. Then the character variety XΓG = hom(Γ,G )//G is
homeomorphic to HMG , a moduli space of G -Higgs bundles over M.

(Mirror symmetry) Equality of invariants for Langlands dual G and
LG -structures.
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Mixed Hodge structures on cohomology by Deligne

Deligne has extended Hodge theory (Hodge decomposition of the de Rham
cohomology of Kähler variety) to algebraic varieties which may be singular
or noncompact.

Mixed Hodge Structures

X quasi-projective algebraic variety /C.
Singular cohomology with compact support Hk

c (X ) .
Deligne defines a natural and functorial mixed Hodge structure
Hk,p,q
c = Hp,q[Hk

c (X ,C)].
Mixed Hodge numbers hk,p,q := dimCH

k,p,q
c .

Compactly supported Betti numbers dimHk
c (X ) = ∑p,q h

k,p,q(X ) and
(p,q) with hk,p,q(X ) 6= 0 are the k-weights of Hk

c (X )⇒ Give usual
Betti numbers by Poincaré duality in the smooth case.

hk,p,q(X ) = hk,q,p(X ).
Kähler varieties carry pure Hodge structure: only weights (p,k−p).
Hodge-Tate varieties, or balanced, only weights (p,p).
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Polynomials
We can assemble all the hk,p,q(X ) in the (compactly supported) mixed
Hodge polynomial

µ(X ; t,u,v) := ∑
k,p,q≥0

hk,p,q(X ) tkupvq ∈ N0[t,u,v ],

Then: (compactly supported) Poincaré polynomial P(X ; t) = µ(X ; t,1,1)
and the Serre (E-) polynomial is E (X ; u,v) = µ(X ;−1,u,v).
Also, compactly supported Euler characteristic
χc(X ) = E (X ; 1,1) = µ(X ;1,1,1) = Pc(X ; −1) = ∑k(−1)k dimHk

c (X )
coincides with χ(X ) for quasi-projective.

Multiplicativity (Künneth) and Additivity

E (X ×Y ) = E (X ) ·E (Y )
X = Z t (X\Z ) locally closed ⇒ E (X ) = E (Z ) +E (X\Z )

Example

E (Cn) = (uv)n, E ((C∗)n) = (uv −1)n, so that χ(Cn) = 1, χ((C∗)n) = 0.
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E -polynomial under fibrations

Proposition (Dimca-Lehrer, Logares-Newstead-Muñoz)

Let F →Wy X → B , W preserving fibers π−1(b) verifying any of
a) Locally Zariski trivial (LTZ)
b) Smooth, locally analytic trivial and π1(B) y H∗c (F ) trivially
c) X , B smooth and F complex connected Lie group
d) F is a special group (all principal F -bundles are LZT)

then, EW (X ) = EW (F ) ·E (B) .

Of course, if W is trivial, E (X ) = E (F ) ·E (B).
From C∗→ GLn→ PGLn, E (GLn) = (1−uv) ·E (PGLn).

Example (F needs to be connected)

Z2→ P1×P1→ Sym2(P1), (1+uv)2 6= 2 · (1+uv +u2v2)
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Some results

Let Γ = π1(Σg ) the fund. group of genus g compact orientable surface.
N. Hitchin ( ’87): Poincaré polynomials for G = SL2C
P. Gothen (’94): Poincaré polynomials for G = SL3C
T. Hausel - F. Rodriguez-Villegas (2008): Hodge-Deligne polynomials
for SL2C, conjectures for higher n.
Logares, Muñoz, Newstead, Martínez (’13,’14,’17): Geometric
approach to compute E-polynomials for G = SL2(C) and PGL2(C)
Mozgovoy-Reineke: (’15) Generating series to compute the points of
XrGLn over Fq, in terms of irreducible representations.
Garcia-Prada, Heinloth and Schmitt (’14); Schiffman (’16), Mellit
(’17): Poincaré polynomials for all G = SLnC.
Florentino-Silva (’18): Combined methods for abelian character
varieties XZrG , G = GLn(C),SLn(C),Spn(C).

Most of the above results are for smooth (twisted) character varieties. Not
much is known for Hom(Γ,G )//G except for low rank SLn or GLn.
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Free group case: Deformation Retraction (Homotopy
equivalences)

Let Γ = Fr the free group of rank r . Use the notation
XrG := XFrG , recall: XrG = G r//G . Topology result in the free
case Γ = Fr :

Theorem (Florentino-Lawton-Casimiro-Oliveira ’09-’15)

Let G be a real/complex reductive group, with maximal compact
subgroup K . Then, XFrK is a strong deformation retraction of
XFrG (hence Betti numbers agree bk(XFrK ) = bk(XFrG ) for all
k).

Example: Tom Baird’s formula, for SU(2), implies the one for SL2

P(XrSL2C; t) = 1+ t− t(1+ t3)r

1− t4
+

t3

2
((1+ t)r

1− t2
− (1− t)r

1+ t3
)
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Relation with number theory

Let X be a Z-scheme and let Fq be a finite field with q = pm elements.

Polynomial count
We say X is polynomial count if there is a counting polynomial for X ,
CX (t) ∈ Z[t] such that |X/Fq|= CX (q), for almost every prime p.

Theorem (Katz (’08))

If X is polynomial count then E (XC;u,v) = CX (uv), where XC := X ⊗ZC.

Theorem (Mozgovoy-Reineke (’15))

When Γ = Fr , free group of rank r , (full and irreducible) GLn-character
varieties are polynomial count.
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Arithmetic: counting points over finite fields

Mozgovoy-Reineke ’15:

∑
n≥1

E (X irr
Fr

GLn) tn = (1−x)PLog(S ◦F−1(t))

∑
n≥0

E (XFrGLn) tn = PExp
(
∑n≥1E (X irr

Fr
GLn) tn

)
,

where F and S are the operators in Q[x ][[t]]:

S(t) = t,S(tn) := x (1−r)(n2)tn, F (t) := 1+ ∑
n≥1

((x−1) · · ·(xn−1))r−1 tn.

Plethystic operators

Adams operator: Given f (x ,y ,z) = ∑n fn(x ,y)zn ∈Q[x ,y ][[z ]],
Ψ(x i tk) = ∑l≥1

x li t lk

l and Ψ−1(x i tk) = ∑l≥1
µ(l)
l x li t lk , where µ is the

Möbius function µ : N→{0,±1} (µ(n) = (−1)k if n is square free with k
primes in its factorization; µ(n) = 0 otherwise).

PExp(f ) = eΨ(f ), PLog(f ) := Ψ−1(logf )
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Stratification by stabilizer dimension

Any character variety admits a stratification by the dimension of
the stabilizer of a given representation.

Let Γ a finitely presented group and G a complex reductive
algebraic group
Locally closed stratification by stabilizer dimension:

XΓG =
⊔

m≥m0

X m
Γ G

where m0 = dim(
⋂

ρ∈RΓG Stab(ρ)), center of the action of G
on RΓG .

In the linear case G = GLn (as well as the related groups SLn and
PGLn), there is a more convenient refined stratification that gives a
lot of information on the corresponding character varieties which we
call stratification by partition type.
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stratification by partition type for G = GLn

Partition

[k] = [1k12k2 · · ·nkn ] ∈Pn, ∑
n
j=1 j ·kj = n, with length

|[k]|= ∑
n
j=1 kj . For example [12 2 4] ∈P8, whose length is 4.

[k]-strata

ρ ∈RΓ(GLn) is [k]-polystable if ρ ∼conj
⊕n

j=1 ρj , where

ρj ∈RΓ(GLirrj )⊕kj . Define X
[k]

Γ GLn := R
[k]
Γ GLn//GLn, the

[k]-stratum of XΓGLn.

Abelian stratum: X
[1n]

Γ GLn (of maximal length)

Irreducible stratum: X
[n]

Γ GLn (of minimal length), smooth
locus for GLn.
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Stratification by polystability type for G = GLn

Theorem (Florentino-N. -Zamora (2021))

There exists a locally closed stratification by partition type:

XΓGLn =
⊔

[k]∈Pn

X
[k]

Γ GLn

This stratification refines the one by stablizer dimension and
different partitions with the same length become disjoint irreducible
components of each stratum by stablizer dimension.
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Setting: Γ a finitely presented group. G = GLn(C). Stratify XΓGLn by
block type, each strata X

[k]
Γ GLn corresponds to a partition [k] ∈Pn. The

next result relates, by the plethystic exponential, the generating functions
of the E -polynomials E (XΓGLn) to the corresponding generating functions
of the E -polynomials of the irreducible character varieties E (X irr

Γ GLn).

Theorem (Florentino–N.–Zamora (2021))

Let Γ be a finitely presented group. Then, in Q[u,v ][[t]]:

∑
n≥0

E (XΓGLn;u,v) tn = PExp

(
∑
n≥1

E (X irr
Γ GLn;u,v) tn

)
.

Generalizes [Mozgovoy-Reineke ’15] to an arbitrary Γ even if the character
variety is not Polynomial Type!.
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Symmetric Products of Irreducible Character Varieties

[k]-Levy

L[k] := GLk1
1 ×GLk2

2 ×·· ·×GLknn ⊂ GLn

L[k] acts naturally, factorwise, on the space of polystable representations of

type [k], R
[k]
Γ G , and the GIT quotient is a product of irreducible character

varieties:
R

[k]
Γ GLn//L[k] =×n

j=1(X irr
Γ GLj)

×kj

Note, however, that this does not coincide with the [k]-character variety
X

[k]
Γ GLn. Indeed, when some kj > 1, there is a permutation group acting

on R
[k]
Γ G by permuting the blocks of equal size:

[k]-symmetric group

S[k] := Sk1×Sk2×·· ·×Skn ⊂ Sn

each subgroup Skj ⊂ Sn only permutes the kj blocks of size j , and does not
act on other blocks. Hence,

Proposition (Florentino- N. -Zamora (2021))

a) X
[k]

Γ GLn '
(
R

[k]
Γ GLn//L[k]

)
/S[k] '×n

j=1Sym
kj (X irr

Γ GLn).
b) ∑n≥0E (Symn(X );u,v)yn = PExp(E (X ;u,v)y) (using Cheah).
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Our proofs allow us to obtain a closed formula for each individual E -polynomial
of XΓGLn as a finite sum in the E -polynomials of the irreducible character
varieties X irr

Γ GLn of lower dimension: indexed by what we call rectangular
partitions of n.

Corollary
Let Γ be a finitely presented group. Then,

E (XΓGLn;u,v) = ∑
[[k]]∈RPn

n

∏
l ,h=1

BΓ
l (uh,vh)kl ,h

kl ,h!hkl ,h

Moreover, for a given [m] ∈Pn, the E -polynomial of the corresponding stratum
is:

E (X
[m]

Γ GLn;u,v) = ∑
[[k]]∈π−1[m]

n

∏
l ,h=1

BΓ
l (uh,vh)kl ,h

kl ,h!hkl ,h

where BΓ
l (u,v) := E (X irr

Γ GLl ;u,v).
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Rectangular partitions

Rectangular partition

[[k]] = [(1×1)k1,1 (1×2)k1,2 · · ·(1×n)k1,n · · ·(n×n)kn,n ] ∈RPn satisfying
n = ∑

n
l ,h=1 l hkl ,h.

The geometric interpretation of rectangular partitions is as follows: we are
decomposing an initial set with area n, into a set of rectangles of each
possible size l ×h ≤ n, and each l ×h rectangle appears with multiplicity
kl ,h. This explains the terminology gluing map as it is obtained by gluing
all rectangles to form the usual Young diagram of a partition:

Gluing map

π : RPn→Pn

[[k]] 7→ [m] = [1m1 · · ·nmn ]

defined by ml := ∑
n
h=1 h ·kl ,h
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Explicit computations in the free group case

Recall by [Mozgovoy-Reineke (’15), Katz (’08)], for Γ = Fr , GLn-character
varieties are polynomial count and E (X ;u,v) = CX (uv).

Proposition (Mozgovoy-Reineke (’15), Florentino-N. -Zamora (’21))

For r ,n ≥ 2, we have E (X irr
r GLn;x) =

(x−1)∑
d |n

µ(n/d)

n/d ∑
[k]∈Pd

(−1)|[k]|

|[k]|

(
|[k]|

k1, · · · ,kd

) d

∏
j=1

bj(x
n/d)kj x

n(r−1)kj
d ( j

2) ,

where µ is the Möbius function, and the bj(x) are polynomials defined by

(1+ ∑
n≥1

bn(x) tn)

(
1+ ∑

n≥1

(
(x−1)(x2−1) . . .(xn−1)

)r−1
tn

)
= 1 .
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Explicit expressions for B r
n(x) = E (X irr

r GLn;x)

Example (s = r −1)

B r
1(x)

x−1
=(x−1)s ,

B r
2(x)

x−1
=(x−1)s

(
(x−1)sx s((x +1)s −1) +

1
2

(x−1)s − 1
2

(x +1)s
)
,

B r
3(x)

x−1
=(x−1)s

(
− 1

3
(x2 + x +1)s + (x−1)2s(

1
3
−x s + x s(x +1)s ,

+ x3s + x3s(x +1)s(x2 + x +1)s −2x3s(x +1)s)
)

B r
4(x)

x−1
=(x−1)2s

(1
4

(x−1)2s − 1
4

(x +1)2s + (x2−1)sx s(1− (x +1)s),

+
1
2

(x +1)2sx2s(1− (x2 +1)s) +
1
2

(x−1)2sx2s(1− (x +1)s)2

− (x−1)2sx3s(−(x +1)s(x2 + x +1)s +2(x +1)s −1)

− (x−1)2sx6s(−(x +1)s(x2 + x +1)s(x3 + x2 + x +1)s

+2(x +1)s(x2 + x +1)s + (x +1)2s −3(x +1)s +1
))

.
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Solution of conjecture for Langlands dual groups

Again Γ = Fr the free group of rank r ,

Curious equality [Lawton-Muñoz ’16]: For all r ,n = 2,3
E (XFrSLnC) = E (XFrPGLnC).

They suspected the equality for higher n.

Theorem (Florentino–N.–Zamora (2021))

There are isomorphisms of mixed Hodge structures
H∗(XrSLn)∼= H∗(XrPGLn) and H∗c (X irr

r SLn)∼= H∗c (X irr
r PGLn).

In particular, their E -polynomial coincide. Moreover for all partition
[k] ∈Pn, we have

E (X
[k]

Γ SLn) = E (X
[k]

Γ PGLn) = (uv −1)−rE (X
[k]

Γ GLn).
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Idea of proof

The action RrC∗×XrGLn→XrGLn preserve the
stratification of GLn, so we define:

X
[k]
r PGLn := X

[k]
r GLn/RrC∗ = X

[k]
r GLn/(C∗)r ,

we define the [k]-stratum of XrSLn by restriction of the
corresponding one for GLn:

X
[k]
r SLn := {ρ ∈X

[k]
r GLn|detρ = 1} .

The character varieties XrSLn and XrPGLn can be written as
a disjoint unions of of locally closed quasi-projective varieties,
labelled by partitions [k] ∈Pn

XrSLn =
⊔

[k]∈Pn

X
[k]
r SLn, XrPGLn =

⊔
[k]∈Pn

X
[k]
r PGLn
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Proposition (Florentino-N. -Zamora (2021))

The fibration

RrC∗→X
[k]
r GLn→X

[k]
r PGLn

is special, therefore

E (X
[k]
r GLn) = (uv −1)rE (X

[k]
r PGLn) ,

and E (XrGLn) = (uv −1)rE (XrPGLn) .

It is hard to prove E (XrGLn) = (uv −1)rE (XrSLn): we prove the
equality by distinguishing between partitions with at least 2 parts
and the irreducible case ([k] = [n] of length = 1).

Proposition

If length [k] ∈Pn is > 1, then E (X
[k]
r GLn) = (x−1)rE (X

[k]
r SLn).

Therefore E (X
[k]
r SLn) = E (X

[k]
r PGLn).
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Theorem (Florentino-N.-Zamora (2021))

The central action of Zr
n on X irr

r SLn giving the quotient map

X irr
r SLn→X irr

r PGLn

induces an isomorphism of mixed Hodge structures
H∗(X irr

r SLn)∼= H∗(X irr
r PGLn).

We use differential geometric techniques, taking advantage of the
fact that X irr

r SLn is a smooth variety and X irr
r PGLn is an orbifold

(Florentino-Lawton 2014).
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Define U∗r ,n = Homirr (Fr ,U(n))⊂ Ur ,n = Hom(Fr ,U(n)) and similarly
SU∗r ,n, SUr ,n, PU∗r ,n, PUr ,n: we can also get PUr ,n and PU∗r ,n as finite
quotients of SUr ,n and SU∗r ,n:

PUr ,n = SUr ,n/Cr ,n, PU∗r ,n = SU∗r ,n/Cr ,n.

where Cr ,n = Hom(Fr ,Zn)
Define a stratification by polystable type of Ur ,n, SUr ,n and PUr ,n in
complete analogy with the stratifications for GLn.

Step 1

There are isomorphisms H∗(SU∗r ,n)∼= H∗(PU∗r ,n),
H∗(X ∗

r SUn)∼= H∗(X ∗
r PUn) and H∗(XrSUn)∼= H∗(XrPUn).

For the stratification SUr ,n =
⊔

[k]∈Pn
SU

[k]
r : If length [k] > 1, action

Cr ,n y H∗(SU
[k]
r ,n) is trivial (construct homotopies to the identity).

Given that Cr ,n ⊂ SUr ,n connected, action Cr ,n y H∗(SUr ,n) is trivial.
The action Cr ,n y H∗(SU∗r ,n) is trivial
The quotient map π : SU∗r ,n→ PU∗r ,n = SU∗r ,n/Cr ,n is
PU(n)-equivariant and the PU(n) action is free on the irreducible
representation spaces, then

H∗(X ∗
r SUn)∼= H∗PU(n)(SU∗r ,n)∼= H∗PU(n)(PU∗r ,n)∼= H∗(X ∗

r PUn),
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Step 2
Use the strong deformation retraction:

H∗(XrSLn)
SDR∼= H∗(XrSUn)

Step1∼= H∗(XrPUn)
SDR∼= H∗(XrPGLn).

Since the quotient XrSLn→XrPGLn is algebraic, the above
isomorphism H is an isomorphism of mixed Hodge structures.

Step 3
In the same fashion
H∗(

⊔
|[k]|≥2 X

[k]
r SLn)∼= H∗(

⊔
|[k]|≥2 X

[k]
r PGLn), as MHS.

Finally, using the 5-lemma, Hk
c (X irr

r SLn)∼= Hk
c (X irr

r PGLn).

Again, since the finite quotient X irr
r SLn→X irr

r PGLn is algebraic,
this implies the isomorphism of mixed Hodge structures on the
corresponding compactly supported cohomology groups, and the
equality of E-polynomials.
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E -polynomial of the SL4 and PGL4-character varieties of the
free group

Theorem (Florentino-N.-Zamora (2021))

The E-polynomials of the SL4 (and PGL4)-character varieties of the free group Γ = Fs+1 are equal to

E (Xs+1SL4;x) =
1
24

(x−1)3s+3

+ (x−1)3s+1[(x +1)2s x
2s

2
+ (x +1)s

(
x3s(x2 + x +1)s −2x3s −x2s +

3x s

2
)]

+ (x−1)3s+1[x3s +
x2s

2
− 3x s

2
+

11
24
]

+ (x−1)3s(x +1)2s(−x6s +
x2s

2
)

+ (x−1)3s(x +1)sx6s[(x2 + x +1)s(x3 + x2 + x +1)s −2(x2 + x +1)s +3
]

+ (x−1)3s(x +1)s
[
x3s((x2 + x +1)s −2

)
−x2s +

x s

2
]

+ (x−1)3s(−x6s + x3s +
x2s

2
− x s

2
+

1
2

)

+ (x−1)2s+2 (x−1)s+1

4

+ (x−1)2s+1 (x +1)s

2
(−(x +1)sx s + x s − 1

2
)

+ (x−1)2s(x +1)s
x s

2
(1− (x +1)s)

+ (x−1)s+1[(x +1)
x

3
(x2 + x +1)s +

(x +1)2s

8
(x2 +2x +2)

]
+ (x−1)s(x +1)2s[x2s+1

2
((x2 +1)s −1) +

x−1
4
]

− 1
4

(x +1)s+1(x2 +1)s +
1
4

(x3 + x2 + x +1)s+1.
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Corollary
The Euler characteristics of the SLn and PGLn character varieties
of the free group are

χ(XrSLn) = χ(XrPGLn) = ϕ(n)nr−2

where ϕ(n) is the arithmetic Euler function. The Euler
characteristics for the strata of the form [dn/d ] ∈Pn are

χ(X
[dn/d ]
r SLn) = χ(X

[dn/d ]
r PGLn) =

µ(d)

d
nr−1 ,

otherwise χ(X
[k]
r SLn) = 0, where µ(n) is the arithmetic Möebius

function.
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