Counting sheaves from counting curves

Joint with Soheyla Feyzbakhsh

- "Curve counting and S-duality", arXiv:2007.03037
- "Rank r DT theory from rank 0", arXiv:2103.02915
- "Rank r DT theory from rank 1", arXiv:2108.02828

Counting sheaves from counting curves

Joint with Soheyla Feyzbakhsh

- "Curve counting and S-duality", arXiv:2007.03037
- "Rank r DT theory from rank 0", arXiv:2103.02915
- "Rank r DT theory from rank 1", arXiv:2108.02828

Contents

- Joyce-Song's generalised DT invariants
- The rough idea: passing from rank r to ranks $\leq r-1$
- Example: rank 1 to rank 0
- Rank r to rank 0
- Weak stability conditions
- Wall crossing
- Rank 0 to rank - 1

Preliminaries

Throughout we work on a fixed Calabi-Yau 3-fold X (smooth complex projective variety with $K_{X} \cong \mathcal{O}_{X}$) with a fixed ample line bundle $\mathcal{O}_{X}(1)$ and hyperplane class $H:=c_{1}\left(\mathcal{O}_{X}(1)\right) \in H^{2}(X, \mathbb{Z})$
satisfying the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda (for which, see later) such as a quintic 3-fold (Chunyi Li).
Fix a Chern character $c \in H^{\text {ev }}(X, \mathbb{Q})$
(or a numerical K-theory class $c \in K_{\text {num }}(X):=K(X) / \operatorname{ker} \chi(\cdot, \cdot)$).
Consider (semi)stable bundles, or sheaves, or complexes of sheaves E of class c.

Stability

There are many notions of stability for E.
The ones we consider can be written in terms of some central charge $Z(\operatorname{ch}(E)) \in \mathbb{C}$.

Writing $Z(E)=m(E) \exp (2 \pi i \theta(E))$ we let the slope of E be $\mu(E):=\tan \theta(E)$ and say E is (semi)stable if and only if

$$
\mu(F)(\leq) \mu(E / F) \text { for all nonzero } F \subsetneq E
$$

Here (\leq) means $<$ for stability and \leq for semistability. (Definition of $F \subset E$ is tricky, but for now can just take subsheaves of sheaves.)
E.g. $Z(E)=\int_{X} c_{1}(E) \cdot H^{2}+i \operatorname{rank}(E)$ gives $\mu(E)=\frac{\operatorname{deg}(E)}{\operatorname{rank}(E)}$ and slope stability.
E.g. $Z(E)=\left[\int_{X} \operatorname{ch}(E(n)) \cdot \operatorname{td}\right]_{\leq 2}+i \operatorname{rank}(E)$ for large $n \gg 0$ gives Gieseker stability.

DT invariants

Joyce-Song/Kontsevich-Soibelman defined a

$$
\text { generalised DT invariant } J(c) \in \mathbb{Q}
$$

"counting" Gieseker semistable sheaves E in class c.
When H, c are such that semistable $=$ stable this reduces to "classical" $D T(c) \in \mathbb{Z}$, which we can think of it as $(-1)^{\operatorname{dim} M_{c}} e\left(M_{c}\right)$.

Behrend showed each point $E \in M_{c}$ can be assigned a multiplicity $\chi^{B}(E) \in \mathbb{Z}$ such that $D T(c)$ is the weighted Euler characteristic

$$
e\left(M_{c}, \chi^{B}\right)=\sum_{i \in \mathbb{Z}} i e\left(\left\{\chi^{B}=i\right\}\right)
$$

Invariant under deformations of X.
Changes via a wall-crossing formula when we change the stability condition.

The simplest wall crossing formula

Suppose a bundle F sits in an exact sequence

$$
\begin{equation*}
0 \longrightarrow A \longrightarrow F \longrightarrow B \longrightarrow 0 \tag{*}
\end{equation*}
$$

with A, B stable, and that we can vary the stability condition so that the slopes of A and B cross.
Just below the wall $(\mu(A)<\mu(B)) F$ will be stable. Just above the wall F will be destabilised by ($*$), but extensions in the opposite direction will become stable.
So on crossing the wall we lose a $\mathbb{P}\left(\operatorname{Ext}^{1}(B, A)\right)$ of extensions $(*)$ and gain a $\mathbb{P}\left(\operatorname{Ext}^{1}(A, B)\right)$.
So the Euler characteristic changes by $-\operatorname{ext}^{1}(B, A)+\operatorname{ext}^{1}(A, B)$ $=-e x t^{1}(B, A)+\operatorname{ext}^{2}(B, A)=\chi(B, A)$ by Serre duality. WCF is

$$
J_{+}[F]=J_{-}[F]+(-1)^{\chi(B, A)-1} \chi(B, A) J[A] J[B] .
$$

The rough idea

Fix $n \gg 0$ so that $H^{\geq 1}(E(n))=0$ for all semistable E of charge c.
Now replace E by the cokernel F of a section $s \in H^{0}(E(n))$,

$$
0 \longrightarrow \mathcal{O}(-n) \xrightarrow{s} E \longrightarrow F \longrightarrow 0 .
$$

Then $\operatorname{rank}(F)=\operatorname{rank}(E)-1$ and $\operatorname{ch}(F)=c_{n}:=c-e^{-n H}$.
To a first approximation, suppose all such E, F are stable for $s \neq 0$.
Then we find all $F s$ come from an (E, s), so $M_{c_{n}}$ is a \mathbb{P}^{N-1}-bundle $\operatorname{over} M_{c}\left(N:=\chi(E(n))=\int_{X} c \cdot e^{n H} \cdot \operatorname{td}_{x}\right)$, so

$$
J\left(c_{n}\right)=(-1)^{N-1} \cdot N \cdot J(c)
$$

Now wall-cross to handle stability and get the correct formula....

An example: rank 1 from rank 0

The rough idea actually works perfectly when rank $=1$.
Here M_{c} is a moduli space of ideal sheaves $E=\mathcal{I}_{Z}$, where $Z \subset X$ is a subscheme of dimension ≤ 1. (Possibly tensored by a line bundle.)

Then $s \in H^{0}\left(\mathcal{I}_{Z}(n)\right) \hookrightarrow H^{0}(\mathcal{O}(n))$ cuts out divisor $\iota: D \hookrightarrow X$ and

$$
F=\text { coker } s=\iota_{*}\left(I_{Z}\right)
$$

is a torsion sheaf supported on D. ("D4-D2-D0 brane.")
In this case E, F are Gieseker stable and slope stable and are the only stable sheaves are of this form,

$$
M_{c_{n}} \longrightarrow M_{c} \text { is a } \mathbb{P}^{N-1} \text {-bundle, } \quad N=\chi(c(n))
$$

and $J\left(c_{n}\right)=(-1)^{N-1} \cdot N \cdot J(c)$.
(Eg rank 2 bundles supported on $D \in\left|\frac{n}{2} H\right|$ with $c h=c_{n}$ are unstable.)

GW invariants

$J\left(c_{n}\right)=(-1)^{N-1} \cdot N \cdot J(c)$.
The abelian DT invariants $J(c)$ count curves (and points) in X and - by the MNOP conjecture - can be written in terms of the Gromov-Witten invariants of X.
(Maulik-Nekrasov-Okounkov-Pandharipande conjecture now proved for most Calabi-Yau 3-folds by Pandharipande-Pixton.)
The generating series of D4-D2-D0 counts $J\left(c_{n}\right)$ are conjectured by "S-duality" to be vector-valued mock modular forms. ([MSW97, dBCDMV06, GSY07, DM11, AMP19]; possibly need further wall-crossing to reach attractor stability)

Rank r from rank 0

In higher rank $r \geq 1$ there are corrections to the "rough idea".
They mean we can write rank r invariants in terms of rank $r-1, r-2, \ldots, 0$ invariants. Inductively we get to rank 0 .

Theorem (arXiv:2103.02915)
For fixed c of rank ≥ 1,

$$
J(c)=F\left(J\left(\alpha_{1}\right), J\left(\alpha_{2}\right), \ldots\right)
$$

is a universal polynomial in invariants $J\left(\alpha_{i}\right)$, with all α_{i} of rank 0 and pure dimension 2.
So to express everything in terms of rank 1 ("abelian" theory) what's left is to express rank 0 in terms of rank 1 . (See later.)

Weak stability conditions

We use the weak stability conditions of Bayer-Macrì-Toda.
Pick $b, w \in \mathbb{R}$ with $w>\frac{1}{2} b^{2}$.
Instead of $\operatorname{Coh}(X) \subset D(X)$ we work in the abelian category

$$
\mathcal{A}_{b}:=\left\{E^{-1} \xrightarrow{d} E^{0}: \mu_{H}^{+}(\operatorname{ker} d) \leq b, \mu_{H}^{-}(\operatorname{coker} d)>b\right\} .
$$

$\mu^{+}(F)$ is the maximum slope of a subsheaf of F,
$\mu^{-}(F)$ is the minimum slope of a quotient sheaf of F.
On this we use the central charge $Z(E)=\left[\operatorname{ch}_{1}(E) \cdot H^{2}-b \operatorname{ch}_{0}(E) H^{3}\right]+i\left[\operatorname{ch}_{2}(E) \cdot H-w \operatorname{ch}_{0}(E) H^{3}\right]$,
i.e. the slope function

$$
\nu_{b, w}(E)=\left\{\begin{array}{cl}
\frac{\operatorname{ch}_{2}(E) \cdot H-w \operatorname{ch}_{0}(E) H^{3}}{\operatorname{ch}_{1}(E) \cdot H^{2}-b \operatorname{ch}_{0}(E) H^{3}} & \text { if } \operatorname{ch}_{1}(E) \cdot H^{2}-b \operatorname{ch}_{0}(E) H^{3} \neq 0 \\
+\infty & \text { if } \operatorname{ch}_{1}(E) \cdot H^{2}-b \operatorname{ch}_{0}(E) H^{3}=0
\end{array}\right.
$$

Bogomolov-Gieseker conjecture

We assume the Bogomolov-Gieseker conjecture of Bayer-MacrìToda: a certain upper bound on ch_{3} for $\nu_{b, w}$-semistable objects E. Setting $C_{i}:=\operatorname{ch}_{i}(E) \cdot H^{3-i}$, it is

$$
\left(C_{1}^{2}-2 C_{0} C_{2}\right) w+\left(3 C_{0} C_{3}-C_{1} C_{2}\right) b+\left(2 C_{2}^{2}-3 C_{1} C_{3}\right) \geq 0
$$

It is a sufficient condition for the existence of Bridgeland stability conditions on X, and has now been proved for some Calabi-Yau 3-folds.

For instance Chunyi Li proved it for many (b, w) (enough for our applications) on quintic 3 -folds X.

Weak stability conditions II

Plot $\Pi(E):=\left(\frac{\mathrm{ch}_{1}(E) \cdot H^{2}}{\mathrm{ch}(E) H^{3}}, \frac{\mathrm{ch}_{2}(E) \cdot H^{2}}{\mathrm{ch}(E) H^{3}}\right)$ on the same axes as (b, w).
Then walls of instability for E become straight lines through $\Pi(E)$ and $\Pi(F)$, where F is a destabilising sub- or quotient- object.

Walls of instability for c_{n}

Some aspects of the proof

- The Joyce-Song wall is where the $\nu_{b, w}$-slopes of F (of charge c_{n}) and $\mathcal{O}(-n)$ [1] coincide.
- Rotating the exact sequence $0 \longrightarrow \mathcal{O}(-n) \xrightarrow{s} E \longrightarrow F \longrightarrow 0$ in $D(X)$ gives the destabilising exact triangle

$$
E \longrightarrow F \longrightarrow \mathcal{O}(-n)[1] .
$$

- Below the wall F is destabilised by this, above the wall it is stable iff E is $\nu_{b, w}$-semistable and s does not factor through any semi-destabilising subsheaf.
- Gives wall-crossing formula

$$
J_{b, w_{+}}\left(c_{n}\right)=J_{b, w_{-}}\left(c_{n}\right)+(-1)^{N-1} \cdot N \cdot J_{b, w}(c)+\cdots,
$$

where $N=\chi(E(n))$. Lower order terms from sections of destabilising subsheaves of E (lower rank, so can induct on rank).

- Now wall cross second term down to below the BG wall, and all other terms up to large volume chamber.

Some more aspects of the proof

- All these further wall crossings involve only sheaves - no more complexes of sheaves, nor shifts like $\mathcal{O}(-n)[1]$.
- These wall crossings spit out destabilising pieces which we also wall-cross up to the large volume chamber. Their wall-crossing also involves only sheaves. (So rank never increases.)
- At each stage the discriminant $\Delta_{H}=\left(\mathrm{ch}_{1} \cdot H^{2}\right)^{2}-2\left(\mathrm{ch}_{2} . H\right) \mathrm{ch}_{0} H^{3}$ decreases and cannot drop below 0 .
- So a double induction on rank and Δ_{H} turns
$J_{b, w_{+}}\left(c_{n}\right)=J_{b, w_{-}}\left(c_{n}\right)+(-1)^{N-1} \cdot N \cdot J_{b, w}(c)+\cdots$ into $J_{b, \infty}\left(c_{n}\right)=0+(-1)^{N-1} \cdot N \cdot J_{b, \infty}(c)+\cdots$ with \cdots of the form $F\left(J_{b, \infty}\left(\alpha_{i}\right)\right), \operatorname{rank}\left(\alpha_{i}\right) \leq r-1$
- A further wall-crossing passes from $J_{b, \infty}$ to J.
- Thus have written $J(c)$ in terms of J of lower rank sheaves.

Rank 0 to rank -1

Now suppose c has rank 0 . We go one step further to rank -1 .
Fix $n \gg 0$ so that $H^{\geq 1}(E(n))=0$ for all semistable E of charge c.
For a section $s \in H^{0}(E(n))$, again replace E by the rank -1 complex of sheaves $F \in D(X)$

$$
F:=\{\mathcal{O}(-n) \xrightarrow{s} E\} .
$$

Since s is neither injective nor surjective F is no longer quasi-isomorphic to a sheaf (unlike when $\operatorname{rank}(E)>0$).
So we study $\nu_{b, w}$-semistable rank -1 complexes of charge $\operatorname{ch}(F)=c_{n}:=c-e^{-n H}$. Joyce-Song wall gives relation of $J_{b, w}(c)$ to $J_{b, w}\left(c_{n}\right)$ as before.
Over other walls we show destabilising factors also rank -1 complexes and rank 0 sheaves with strictly smaller degree $\mathrm{ch}_{1} . H^{2}<c . H^{2}$ allowing us to set up an induction on this degree (in place of rank used earlier).

Rank -1 to rank 1

The shift by [1] of the derived dual of F

$$
F^{\vee}[1]:=\left\{E^{\vee} \xrightarrow{s} \mathcal{O}(n)\right\}
$$

has rank 1, and after wall crossing becomes a stable pair. After a further, older wall-crossing (Bridgeland, Toda) it becomes an ideal sheaf, recovering the MNOP (or GW) invariants again.
So the "rough idea" in this case gives a universal formula relating rank 0 to rank 1 DT invariants (or D4-D2-D0 counts to curve counts), just as we wanted.

