Counting sheaves from counting curves

Joint with Soheyla Feyzbakhsh

- "Curve counting and S-duality", arXiv:2007.03037
- "Rank r DT theory from rank 0", arXiv:2103.02915
- "Rank r DT theory from rank 1", arXiv:2108.02828

Counting sheaves from counting curves

Joint with Soheyla Feyzbakhsh

- "Curve counting and S-duality", arXiv:2007.03037
- "Rank r DT theory from rank 0", arXiv:2103.02915
- "Rank r DT theory from rank 1", arXiv:2108.02828

Contents

- Joyce-Song's generalised DT invariants
- ▶ The rough idea: passing from rank r to ranks $\leq r 1$
- Example: rank 1 to rank 0
- Rank r to rank 0
- Weak stability conditions
- Wall crossing
- ightharpoonup Rank 0 to rank -1

Preliminaries

Throughout we work on a fixed Calabi-Yau 3-fold X (smooth complex projective variety with $K_X \cong \mathcal{O}_X$) with a fixed ample line bundle $\mathcal{O}_X(1)$ and hyperplane class $H := c_1(\mathcal{O}_X(1)) \in H^2(X,\mathbb{Z})$

satisfying the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda (for which, see later) such as a quintic 3-fold (Chunyi Li).

Fix a Chern character $c \in H^{\mathrm{ev}}(X, \mathbb{Q})$ (or a numerical K-theory class $c \in \mathcal{K}_{\mathrm{num}}(X) := \mathcal{K}(X)/\ker\chi(\,\cdot\,,\,\cdot\,)$).

Consider (semi)stable bundles, or sheaves, or complexes of sheaves E of class c.

Stability

There are many notions of stability for E.

The ones we consider can be written in terms of some central charge $Z(\operatorname{ch}(E)) \in \mathbb{C}$.

Writing $Z(E) = m(E) \exp(2\pi i \theta(E))$ we let the slope of E be $\mu(E) := \tan \theta(E)$ and say E is (semi)stable if and only if

$$\mu(F) (\leq) \mu(E/F)$$
 for all nonzero $F \subsetneq E$.

Here (\leq) means < for stability and \leq for semistability. (Definition of $F \subset E$ is tricky, but for now can just take subsheaves of sheaves.)

E.g. $Z(E) = \int_X c_1(E) \cdot H^2 + i \operatorname{rank}(E)$ gives $\mu(E) = \frac{\deg(E)}{\operatorname{rank}(E)}$ and slope stability.

E.g. $Z(E) = \left[\int_X \operatorname{ch}(E(n)) \cdot \operatorname{td}_X \right]_{\leq 2} + i \operatorname{rank}(E)$ for large $n \gg 0$ gives Gieseker stability.

DT invariants

Joyce-Song/Kontsevich-Soibelman defined a

generalised DT invariant
$$J(c) \in \mathbb{Q}$$

"counting" Gieseker semistable sheaves E in class c.

When H, c are such that semistable = stable this reduces to "classical" $DT(c) \in \mathbb{Z}$, which we can think of it as $(-1)^{\dim M_c} e(M_c)$.

Behrend showed each point $E \in M_c$ can be assigned a multiplicity $\chi^B(E) \in \mathbb{Z}$ such that DT(c) is the weighted Euler characteristic

$$e(M_c, \chi^B) = \sum_{i \in \mathbb{Z}} i e(\{\chi^B = i\}).$$

Invariant under deformations of X.

Changes via a wall-crossing formula when we change the stability condition.

The simplest wall crossing formula

Suppose a bundle F sits in an exact sequence

$$0 \longrightarrow A \longrightarrow F \longrightarrow B \longrightarrow 0 \tag{*}$$

with A, B stable, and that we can vary the stability condition so that the slopes of A and B cross.

Just below the wall $(\mu(A) < \mu(B))$ F will be stable.

Just above the wall F will be destabilised by (*), but extensions in the opposite direction will become stable.

So on crossing the wall we lose a $\mathbb{P}(\mathsf{Ext}^1(B,A))$ of extensions (*) and gain a $\mathbb{P}(\mathsf{Ext}^1(A,B))$.

So the Euler characteristic changes by $-ext^1(B,A) + ext^1(A,B) = -ext^1(B,A) + ext^2(B,A) = \chi(B,A)$ by Serre duality. WCF is

$$J_{+}[F] = J_{-}[F] + (-1)^{\chi(B,A)-1}\chi(B,A)J[A]J[B].$$

The rough idea

Fix $n \gg 0$ so that $H^{\geq 1}(E(n)) = 0$ for all semistable E of charge c.

Now replace E by the cokernel F of a section $s \in H^0(E(n))$,

$$0 \longrightarrow \mathcal{O}(-n) \xrightarrow{s} E \longrightarrow F \longrightarrow 0.$$

Then $\operatorname{rank}(F) = \operatorname{rank}(E) - 1$ and $\operatorname{ch}(F) = c_n := c - e^{-nH}$.

To a first approximation, suppose all such E, F are stable for $s \neq 0$.

Then we find all Fs come from an (E, s), so M_{c_n} is a \mathbb{P}^{N-1} -bundle over M_c $(N := \chi(E(n)) = \int_X c \cdot e^{nH} \cdot \operatorname{td}_X)$, so

$$J(c_n) = (-1)^{N-1} \cdot N \cdot J(c).$$

Now wall-cross to handle stability and get the correct formula....

An example: rank 1 from rank 0

The rough idea actually works perfectly when rank = 1.

Here M_c is a moduli space of ideal sheaves $E = \mathcal{I}_Z$, where $Z \subset X$ is a subscheme of dimension ≤ 1 . (Possibly tensored by a line bundle.)

Then $s \in H^0(\mathcal{I}_Z(n)) \hookrightarrow H^0(\mathcal{O}(n))$ cuts out divisor $\iota \colon D \hookrightarrow X$ and

$$F = \operatorname{coker} s = \iota_*(I_Z)$$

is a torsion sheaf supported on D. ("D4-D2-D0 brane.")

In this case E, F are Gieseker stable and slope stable and are the only stable sheaves are of this form,

$$M_{c_n} \longrightarrow M_c$$
 is a \mathbb{P}^{N-1} -bundle, $N = \chi(c(n))$,

and
$$J(c_n) = (-1)^{N-1} \cdot N \cdot J(c)$$
.

(Eg rank 2 bundles supported on $D \in \left| \frac{n}{2}H \right|$ with ch = c_n are unstable.)

GW invariants

$$J(c_n) = (-1)^{N-1} \cdot \mathsf{N} \cdot J(c).$$

The abelian DT invariants J(c) count curves (and points) in X and — by the MNOP conjecture — can be written in terms of the Gromov-Witten invariants of X.

(Maulik-Nekrasov-Okounkov-Pandharipande conjecture now proved for most Calabi-Yau 3-folds by Pandharipande-Pixton.)

The generating series of D4-D2-D0 counts $J(c_n)$ are conjectured by "S-duality" to be vector-valued mock modular forms.

([MSW97, dBCDMV06, GSY07, DM11, AMP19]; possibly need further wall-crossing to reach attractor stability)

Rank r from rank 0

In higher rank $r\geq 1$ there are corrections to the "rough idea". They mean we can write rank r invariants in terms of rank $r-1,\,r-2,\ldots,0$ invariants. Inductively we get to rank 0.

Theorem (arXiv:2103.02915)

For fixed c of rank ≥ 1 ,

$$J(c) = F(J(\alpha_1), J(\alpha_2), \dots)$$

is a universal polynomial in invariants $J(\alpha_i)$, with all α_i of rank 0 and pure dimension 2.

So to express everything in terms of rank 1 ("abelian" theory) what's left is to express rank 0 in terms of rank 1. (See later.)

Weak stability conditions

We use the weak stability conditions of Bayer-Macrì-Toda.

Pick $b, w \in \mathbb{R}$ with $w > \frac{1}{2}b^2$.

Instead of $Coh(X) \subset D(X)$ we work in the abelian category

$$\mathcal{A}_b \ := \ \left\{ E^{-1} \stackrel{d}{\longrightarrow} E^0 \ : \ \mu_H^+(\ker d) \leq b \, , \ \mu_H^-(\operatorname{coker} d) > b \right\}.$$

 $\mu^+(F)$ is the maximum slope of a subsheaf of F, $\mu^-(F)$ is the minimum slope of a quotient sheaf of F.

On this we use the central charge $Z(E) = \left[\operatorname{ch}_1(E).H^2 - b \operatorname{ch}_0(E)H^3 \right] + i \left[\operatorname{ch}_2(E).H - w \operatorname{ch}_0(E)H^3 \right]$, i.e. the slope function

$$\nu_{b,w}(E) = \begin{cases} \frac{\operatorname{ch}_2(E).H - w \operatorname{ch}_0(E)H^3}{\operatorname{ch}_1(E).H^2 - b \operatorname{ch}_0(E)H^3} & \text{if } \operatorname{ch}_1(E).H^2 - b \operatorname{ch}_0(E)H^3 \neq 0, \\ +\infty & \text{if } \operatorname{ch}_1(E).H^2 - b \operatorname{ch}_0(E)H^3 = 0. \end{cases}$$

Bogomolov-Gieseker conjecture

We assume the *Bogomolov-Gieseker conjecture* of Bayer-Macrì-Toda: a certain upper bound on ch_3 for $\nu_{b,w}$ -semistable objects E. Setting $C_i := \operatorname{ch}_i(E).H^{3-i}$, it is

$$\left(C_1^2 - 2C_0C_2\right)w + \left(3C_0C_3 - C_1C_2\right)b + \left(2C_2^2 - 3C_1C_3\right) \geq 0,$$

It is a sufficient condition for the existence of Bridgeland stability conditions on X, and has now been proved for some Calabi-Yau 3-folds.

For instance Chunyi Li proved it for many (b, w) (enough for our applications) on quintic 3-folds X.

Weak stability conditions II

Plot $\Pi(E) := \left(\frac{\operatorname{ch}_1(E).H^2}{\operatorname{ch}_0(E)H^3}, \frac{\operatorname{ch}_2(E).H^2}{\operatorname{ch}_0(E)H^3}\right)$ on the same axes as (b, w).

Then walls of instability for E become straight lines through $\Pi(E)$ and $\Pi(F)$, where F is a destabilising sub- or quotient- object.

Walls of instability for c_n

Some aspects of the proof

- The Joyce-Song wall is where the $\nu_{b,w}$ -slopes of F (of charge c_n) and $\mathcal{O}(-n)[1]$ coincide.
- ▶ Rotating the exact sequence $0 \longrightarrow \mathcal{O}(-n) \xrightarrow{s} E \longrightarrow F \longrightarrow 0$ in D(X) gives the destabilising exact triangle

$$E \longrightarrow F \longrightarrow \mathcal{O}(-n)[1].$$

- ▶ Below the wall F is destabilised by this, above the wall it is stable iff E is $\nu_{b,w}$ -semistable and s does not factor through any semi-destabilising subsheaf.
- ► Gives wall-crossing formula

$$J_{b,w_{+}}(c_{n}) = J_{b,w_{-}}(c_{n}) + (-1)^{N-1} \cdot N \cdot J_{b,w}(c) + \cdots,$$

- where $N = \chi(E(n))$. Lower order terms from sections of destabilising subsheaves of E (lower rank, so can induct on rank).
- Now wall cross second term down to below the BG wall, and all other terms up to large volume chamber.

Some more aspects of the proof

- All these further wall crossings involve only sheaves no more complexes of sheaves, nor shifts like $\mathcal{O}(-n)[1]$.
- ► These wall crossings spit out destabilising pieces which we also wall-cross up to the large volume chamber. Their wall-crossing also involves only sheaves. (So rank never increases.)
- At each stage the discriminant $\Delta_H = \left(\mathsf{ch}_1.H^2 \right)^2 2(\mathsf{ch}_2.H) \, \mathsf{ch}_0 \, H^3$ decreases and cannot drop below 0.
- So a double induction on rank and Δ_H turns $J_{b,w_+}(c_n) = J_{b,w_-}(c_n) + (-1)^{N-1} \cdot N \cdot J_{b,w}(c) + \cdots$ into $J_{b,\infty}(c_n) = 0 + (-1)^{N-1} \cdot N \cdot J_{b,\infty}(c) + \cdots$ with \cdots of the form $F(J_{b,\infty}(\alpha_i))$, $\operatorname{rank}(\alpha_i) \leq r 1$
- ▶ A further wall-crossing passes from $J_{b,\infty}$ to J.
- ▶ Thus have written J(c) in terms of J of lower rank sheaves.

Rank 0 to rank -1

Now suppose c has rank 0. We go one step further to rank -1.

Fix $n \gg 0$ so that $H^{\geq 1}(E(n)) = 0$ for all semistable E of charge c.

For a section $s \in H^0(E(n))$, again replace E by the rank -1 complex of sheaves $F \in D(X)$

$$F := \{\mathcal{O}(-n) \xrightarrow{s} E\}.$$

Since s is neither injective nor surjective F is no longer quasi-isomorphic to a sheaf (unlike when rank(E) > 0).

So we study $\nu_{b,w}$ -semistable rank -1 complexes of charge $\mathrm{ch}(F)=c_n:=c-e^{-nH}$. Joyce-Song wall gives relation of $J_{b,w}(c)$ to $J_{b,w}(c_n)$ as before.

Over other walls we show destabilising factors also rank -1 complexes and rank 0 sheaves with strictly smaller degree $\operatorname{ch}_1.H^2 < c.H^2$ allowing us to set up an induction on this degree (in place of rank used earlier).

Rank -1 to rank 1

The shift by [1] of the derived dual of F

$$F^{\vee}[1] := \{E^{\vee} \xrightarrow{s} \mathcal{O}(n)\}$$

has rank 1, and after wall crossing becomes a stable pair. After a further, older wall-crossing (Bridgeland, Toda) it becomes an ideal sheaf, recovering the MNOP (or GW) invariants again.

So the "rough idea" in this case gives a universal formula relating rank 0 to rank 1 DT invariants (or D4-D2-D0 counts to curve counts), just as we wanted.